ทำอย่างไรจึงจะทำให้มีการใช้ generative AI มากขึ้น

70
0
Share:

หากย้อนนึกถึงเทรนด์เทคโนโลยีที่เกิดขึ้นในอดีต เราจะเริ่มเห็นว่าเมื่อมีเทคโนโลยีใหม่ๆ เกิดขึ้น รูปแบบการใช้งานจริงมักไม่ตายตัว เช่น ไม่มีวิธีการใช้คลาวด์คอมพิวติ้งแบบเดียวที่เหมาะกับองค์กรทุกแห่ง เป็นต้น การผสานแนวทางการใช้งานที่ไม่เหมือนกัน เช่น ระบบภายในองค์กร และบริการคลาวด์จากผู้ให้บริการต่างๆ ไว้ด้วยกัน จะช่วยให้องค์กรได้รับประโยชน์และสามารถปรับใช้แอปพลิเคชันต่างๆ ขององค์กรบนโครงสร้างพื้นฐานแบบไฮบริดได้

 

หากมองไปในอนาคต การใช้งานปัญญาประดิษฐ์ (AI) ภายในองค์กรกับแอปพลิเคชันและสภาพแวดล้อมทางธุรกิจที่หลากหลาย ก็ไม่ต่างกันกับเทรนด์ที่เกิดขึ้นในอดีต ความยืดหยุ่นจะมีความสำคัญมาก เพราะแนวทางการใช้ AI แบบเดียวไม่มีทางที่จะตอบความต้องการให้กับองค์กรทุกแห่งได้ และผู้ให้บริการด้านแพลตฟอร์ม AI รายใดรายหนึ่งก็ไม่สามารถเติมเต็มความต้องการทุกอย่างได้เช่นเดียวกัน แต่การผสานระหว่างโมเดลที่สร้างไว้ล่วงหน้า เข้ากับโซลูชันที่ปรับแต่งเอง (custom-tuned solutions) และผสานกับข้อมูลภายในองค์กรอย่างปลอดภัย จะเป็นเครื่องมือผลักดันการใช้ AI ให้รุดหน้า เฟรมเวิร์กต่างๆ รวมถึงซอฟต์แวร์และโครงสร้างพื้นฐานที่เป็นระบบเปิด จะช่วยให้องค์กรทุกขนาดสามารถเข้าถึงและปรับแต่งโมเดล generative AI (gen AI) ต่างๆ และนำไปปรับใช้ให้ตรงตามความต้องการเฉพาะขององค์กรได้

ความได้เปรียบของการใช้ gen AI

เพื่อให้เข้าใจว่าจะนำ AI มาใช้กับแอปพลิเคชันภายในและภายนอกได้อย่างไร เราจะมาเจาะลึกถึงวิธีการลงทุนทางเทคโนโลยีขององค์กรต่างๆ กันก่อน ข้อมูลจาก Deloitte’s State of Generative AI in the Enterprise in 2024 ระบุว่า ประโยชน์ที่สำคัญที่สุดของการลงทุนด้าน gen AI ไม่ใช่แค่เรื่องการนำนวัตกรรมเข้ามาใช้ในธุรกิจเท่านั้น แต่ยังเน้นด้านประสิทธิภาพ ประสิทธิผล และการทำให้งานที่ต้องทำซ้ำๆ กลายเป็นทำได้โดยอัตโนมัติ จริงอยู่ที่โมเดลเหล่านี้สามารถสร้างคอนเทนต์ใหม่ได้ แต่ประโยชน์จริงๆ ของโมเดลภาษาขนาดใหญ่ (LLMs) คือความสามารถในการประมวลผลข้อมูลปริมาณมหาศาลและสามารถเข้าใจรูปแบบของข้อมูลนั้นๆ และเมื่อนำไปใช้กับซอฟต์แวร์หรือแอปพลิเคชันทั่วไป จะทำให้แอปพลิเคชันเหล่านั้นเป็นแอปพลิเคชันอัจฉริยะที่ช่วยเสริมการทำงาน และกระบวนการทำงาน (เวิร์กโฟลว์) ของพนักงานภายในองค์กรได้

 

Understanding how organizations are focusing on the investment of generative AI in the enterprise, ©Deloitte 2024

อย่างไรก็ตาม การนำ AI มาใช้อาจแตกต่างกันในแต่ละองค์กร โดยทั่วไปองค์กรจะเริ่มจากการทำให้งานพื้นฐานง่ายๆ เป็นอัตโนมัติก่อน จากนั้นจึงขยายสู่การทำให้กระบวนการทำงานทางธุรกิจเป็นอัตโนมัติ และบูรณาการ AI ไว้ในขั้นตอนการทำงานทางธุรกิจต่างๆ อย่างสมบูรณ์ การนำไปใช้แบบค่อยเป็นค่อยไปมักเริ่มด้วยการนำร่องกับงานที่ไม่ส่งผลกระทบต่อการทำธุรกิจมากนัก และใช้ประโยชน์จากเครื่องมือสำเร็จรูปที่พร้อมใช้ทันที (out-of-the-box tools) เช่น เครื่องมือช่วยเขียนโค้ดอัตโนมัติ ซึ่งช่วยประหยัดเวลาจากการที่ต้องทำซ้ำๆ เมื่อความมั่นใจในคุณประโยชน์ของ AI เพิ่มขึ้น นักพัฒนาซอฟต์แวร์ และธุรกิจต่างๆ จึงเริ่มฝัง AI ไว้ในกระบวนการและแอปพลิเคชันทางธุรกิจเฉพาะด้าน ส่วนขั้นตอนสุดท้ายคือการปรับแต่ง-การพัฒนาโมเดล AI ที่เป็นกรรมสิทธิ์ ซึ่งได้รับการใส่ข้อมูลเฉพาะขององค์กรเพื่อให้ AI สามารถขับเคลื่อนให้เกิดข้อมูลเชิงลึกและการตัดสินใจได้อย่างเจาะจง

ในแต่ละขั้นตอนที่กล่าวมานำมาซึ่งประโยชน์และความซับซ้อนในตัวเอง เนื่องจากธุรกิจต่างๆ กำลังใช้ AI ในรูปแบบที่ซับซ้อนมากขึ้น ต่อไปนี้เป็นข้อมูลเชิงลึกของขั้นตอนเหล่านี้ที่จะเผยให้เห็นว่า AI จะค่อยๆ กลายเป็นองค์ประกอบสำคัญที่สามารถนำไปใช้ในการดำเนินงานด้านต่างๆ ได้อย่างไร

การใช้ประโยชน์จาก AI: เพิ่มประสิทธิภาพงานต่างๆ ด้วยความช่วยเหลือจาก AI

ไม่กี่ปีที่ผ่านมา เราหลายคน โดยเฉพาะนักพัฒนาซอฟต์แวร์และวิศวกรได้ใช้ GenAIเพื่อทำให้การทำงานประจำเป็นอัตโนมัติและมีประสิทธิภาพมากขึ้น ผู้ช่วยเขียนโค้ด (code assistants) เป็นกรณีใช้งานปกติสำหรับ LLMs ซึ่งช่วยปรับปรุงงานด้านการเขียนโปรแกรมด้วยภาษาต่างๆ ที่ต้องทำซ้ำๆ เช่น มีการผสานรวม AI ไว้ในเครื่องมือ Red Hat Ansible Lightspeed หรือ Red Hat OpenShift Lightspeed เพื่อให้สามารถพัฒนาซอฟต์แวร์ได้เร็วขึ้น หรือการแก้ไขจุดบกพร่องให้กับสภาพแวดล้อมไอทีที่ใช้ในการปฏิบ้ติงาน ซึ่งในทางปฏิบัติจะช่วยให้ Developer สามารถใช้เวลากับการทำงานที่สำคัญ ลดกระบวนการทำงานที่ต้องทำซ้ำๆ ลงได้

โมเดลที่ pre-built เหล่านี้ใช้งานง่าย ปรับแต่งเพียงเล็กน้อยก็ใช้งานได้ และสามารถทำงานได้โดยไม่ต้องเปลี่ยนโครงสร้างพื้นฐานหลัก จึงช่วยให้ทีมไอทีที่ยังใหม่ต่อการใช้ AI มีทางเลือกที่เข้าถึงได้ ด้วยเหตุนี้ แนวทางปกติของการนำ AI ไปใช้ จึงเกี่ยวข้องกับการใช้ประโยชน์เพื่อเพิ่มประสิทธิภาพในการทำงาน

การนำ AI มาปรับใช้: ผสานรวม AI เข้ากับกระบวนการทางธุรกิจ

เมื่อบริษัทคุ้นเคยกับเครื่องมือเหล่านี้แล้ว ก็มักจะนำโมเดล AI ต่างๆ ไปใช้ในการดำเนินการทางธุรกิจ ในขั้นตอนนี้ AI จะถูกฝังไว้ในแอปพลิเคชัน เพื่อเพิ่มประสิทธิภาพการโต้ตอบให้กับผู้ใช้งาน หรือสนับสนุนงานต่างๆ ที่สามารถปรับขนาดได้ เช่น การให้บริการลูกค้าแบบอัตโนมัติ ตัวอย่างหนึ่งคือทีม Experience Engineering (XE) ของเราได้ใช้โมเดล Mixtral-8x7b-Instruct เพื่อสร้างบทสรุปโซลูชันมากกว่า 130,000 รายการเพื่อสนับสนุนการทำงานด้านต่างๆ ซึ่งส่งผลให้ลูกค้ามีส่วนร่วมด้านการแก้ปัญหาด้วยตนเองเพิ่มขึ้น 20% นักพัฒนาซอฟต์แวร์ในอุตสาหกรรมจำนวนมาก เป็นผู้นำในการนำระบบการแนะนำที่ขับเคลื่อนด้วย AI และเครื่องมือสร้างการมีส่วนร่วมของลูกค้าแบบไดนามิกมาใช้ อย่างไรก็ตามในบางกรณีระบบเหล่านี้ต้องการการปรับแต่งอย่างสมเหตุสมผล เช่น การเทรนเกี่ยวกับรูปแบบการโต้ตอบเฉพาะทาง หรือพฤติกรรมผู้ใช้ เพื่อให้แน่ใจว่าระบบจะมีการตอบสนองอย่างตรงประเด็นและเป็นประโยชน์

ในท้ายที่สุด การใช้ AI กับแอปพลิเคชันสมัยใหม่ จะช่วยให้แอปพลิเคชันมีบริบทที่ลึกมากขึ้นเกี่ยวกับสิ่งที่ผู้ใช้ต้องการ และไม่ว่าบริบทนี้จะเป็นความเข้าใจทั่วไปหรือเฉพาะเจาะจงสำหรับองค์กรใดองค์กรหนึ่ง AI ก็รู้ว่าอะไรคือสิ่งจำเป็นและรู้ขั้นตอนต่างๆ ที่จะนำพาสู่เป้าหมายโดยไม่ต้องได้รับการเทรนอย่างละเอียดจากทีมไอที การขจัดความขัดแย้งระหว่างมนุษย์และระบบเป็นสิ่งที่ทำให้ทุกคนหันไปหาแอปพลิเคชันที่ใช้เทคโนโลยี AI ที่สามารถเข้าใจผู้คนและลด ‘งานหนัก’ ของกระบวนการทำงานต่างๆ

Red Hat OpenShift AI เป็นแพลตฟอร์มที่ผสานรวมแพลตฟอร์มคลาวด์-เนทีฟ แอปพลิเคชัน เพื่อช่วยให้นักพัฒนาซอฟต์แวร์ทดสอบ ใช้ และทำซ้ำโมเดล AI ต่างๆ ได้อย่างมีประสิทธิภาพ สามารถสร้างแอปพลิเคชันแบบเรียลไทม์ที่ตอบสนองความต้องการของลูกค้าได้ การรวมโมเดลพื้นฐานต่างๆ เข้ากับข้อมูลธุรกิจโดยการใช้ APIs และเฟรมเวิร์กการผสานรวม AI เช่น LangChain ทำให้การดำเนินงานกับ AI ที่ใช้วิธีแบบดั้งเดิมที่ซับซ้อนจำนวนมากได้รับการจัดการด้วยการเรียกใช้ฟังก์ชันในตัวแอปพลิเคชันเอง

การปรับแต่ง AI: การบูรณาการข้อมูลที่เป็นกรรมสิทธิ์เพื่อจัดระเบียบการใช้ AI

ขั้นตอนต่อไปสำหรับผู้ที่พร้อมเป็นเจ้าของโมเดล AI ของตนเองอย่างเต็มรูปแบบ คือการปรับแต่งโมเดลเหล่านั้นด้วยข้อมูลที่เป็นกรรมสิทธิ์ ซึ่งเรียกกันว่าการจัดระเบียบโมเดล (model alignmnet) ซึ่งคือจุดที่ศักยภาพของ AI จะเปลี่ยนจากการใช้งานทั่วไป ไปเป็นเครื่องมือเชิงกลยุทธ์ทางธุรกิจ การจัดระเบียบโมเดลให้สอดคล้องกับบริบทการดำเนินงานของบริษัทให้มากที่สุด อย่างไรก็ตาม การเทรนและการปรับแต่งโมเดลอย่างละเอียดด้วยข้อมูลภายในของบริษัท ทำให้เกิดความท้าทายทางเทคนิค เช่น การจัดการชั้นความลับของข้อมูล การจัดสรรทรัพยากร และการอัปเดทโมเดลที่กำลังใช้อยู่

การปรับแต่งสามารถเข้าถึงได้มากขึ้นผ่านเฟรมเวิร์กต่างๆ เช่น retrieval augmented generation (RAG) และการจัดแนวขนาดใหญ่สำหรับแชทบอต (LAB) ใน InstructLab ซึ่งช่วยให้ทีมสามารถจัดระเบียบ AI ให้สอดคล้องกับความรู้เฉพาะทางและข้อมูลที่เป็นกรรมสิทธิ์ InstructLab ช่วยให้องค์กรต่างๆ จัดเลเยอร์ความรู้เฉพาะของบริษัท หรือความสามารถของโมเดลกับ LLMs พื้นฐานได้โดยใช้เทคนิคการสร้างข้อมูลสังเคราะห์ ซึ่งช่วยให้ AI ตอบคำถามหรือทำงานต่างๆ ที่เกี่ยวข้องกับองค์กรได้โดยตรง

พึงระลึกไว้ว่า ไม่มีแนวทางมาตรฐานใดที่องค์กรต่างๆ จะนำไปใช้เพื่อการนำ AI มาใช้ในองค์กร อย่างไรก็ตาม การที่จะสามารถนำ AI ไปใช้งานได้มากขึ้นนั้นต้องพิจารณา 3 ประเด็นสำคัญ คือ การใช้ประโยชน์ การนำไปปรับใช้ และการปรับแต่ง gen AI

บทความโดย
Cedric Clyburn ผู้สนับสนุนนักพัฒนาอาวุโสที่ Red Hat และ Frank La Vigne นักวิทยาศาสตร์ข้อมูลและผู้จัดการการตลาดทางเทคนิคหลักสำหรับ AI ที่ Red Hat

 

Share: